Question 1

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Vind ‘n 99% vertrouensinterval vir die verwagte eksamenpunt indien die toetspunt 70 is. /Find a 99% confidence interval for the expected examination mark if the test mark is 70.

[68.92 ; 81.91]
[69.19 ; 81.65]
[69.97 ; 80.87]
[63.86 ; 86.98]
[71.147 ; 79.70]

Question 2

‘n Pearsonkorrelasiekoëffisiënt van 0 (r=0) vir die veranderlikes X en Y impliseer dat:/ A Pearson correlation coefficient of 0 (r=0) for the variables X and Y implies that:
1. daar geen verwantskap tussen X en Y is nie. /there is no relationship between X and Y.

2. X en Y nie gekorreleerd is nie. /X and Y is not correlated

3. daar ‘n gebrek aan lineariteit tussen X en Y is. /there is a lack of linearity between X and Y.

(i) & (ii)
(i) & (ii) & (iii)
(ii) & (iii)
(ii)
Geeneen van bogenoemde. / None of the above

Question 3

‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n = 20 data points produced the following results:

?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21

Bepaal SSE. / Find SSE.

4.0552
25.148
42.992
49.193
185.094

Question 4

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Toets betekenisvolle regressie. Op ? = 0.01 is die tabel waarde________ . /Test for significance regression. At ? = 0.01 the table value is ________ .

2.306
3.169
2.228
3.355
1.397

Question 5

‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n =20 data points produced the following results:

?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21

Bepaal ‘n 95% vertrouensinterval vir ?as x = 3.0 /Find a 95% confidence interval for ? when x = 3.0.

[11.9809 ; 12.6191]
[10.3848 ; 10.8340]
[10.5763 ; 10.6237]
[10.1258 ; 11.0742]
[10.3767 ; 10.8233]

Question 6

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Vind die vergelyking van die regressielyn wat gebruik kan word om eksamenpunte te beraam vanaf toetspunte./Find the equation of the regression line which can be used to estimate examination marks from test marks.

? = 29.13 – 0.66x
? = 0.66 + 29.13x
? = 0.66 – 29.13x
? = 29.13 + 0.66x
? = 79.8 – 81.9x

Question 7

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y). /The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Vind ‘n 90% vertrouensinterval vir die verwagte eksamenpunt indien die toetspunt 70 is./Find a 90% confidence interval for the expected examination mark if the test mark is 70.

[71.97 ; 78.87]
[69.19 ; 81.65]
[6901 ; 81.83]
[71.14 ; 79.70]
[67.45 ; 83.36]

Question 8

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y). /The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Toets vir betekenisvolle regressie. Gee die toets statistiek waarde./Test for significance regression. Give the test statistic value.

2.306
143.4
5.04
5.3363

Question 9

‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n =20 data points produced the following results:
?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal ‘n 95% vertrouensinterval vir die helling ?. /Find a 95% confidence interval of the slope ?.

[10.3767 ; 10.8233]
[2.9434 ; 3.8566]
[1.1381 ; 5.6619]
[2.9430 ; 3.8570]
[3.1907 ; 3.6093]

Question 10

‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n =20 data points produced the following results:
?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal: Se2 /Determine: Se2

1.3971
10.283
0.2253
0.2138
2.7329

Question 11

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Vind ‘n 95% vertrouensinterval vir die verwagte eksamenpunt indien die toetspunt 70 is./Find a 95% confidence interval for the expected examination mark if the test mark is 70.

[71.97 ; 78.87]
[69.19 ; 81.65]
[69.01 ; 81.83]
[71.14 ; 79.70]
[67.45 ; 83.36]

Question 12

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Bereken die korrelasiekoeffisient./Calculate the correlation coefficient.

0.0011
0.7606
0.8721
0.9989
0.9980

Question 13

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Vind die persentasie variasie wat deur die regressie verklaar word. /Find the percentage of variation explained by the regression.

0.0011 * 100
0.7606*100
0.8721*100
0.9989*100
0.9980*100

Question 14

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Bereken Se2./Calculate Se2.

17.93
4.23
143.4
11.97

Question 15

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Bereken SSE./Calculate SSE.

17.93
4.23
143.4
11.97

Question 16

Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).

X 75 80 93 65 87 71 98 68 84 77
Y 82 78 86 72 91 80 95 72 89 74

Vind ‘n 95% vertouensinterval vir die ? /Find the 95% confidence interval for the ?.

[0.60 ; 0.71]
[– 1.2040 ; 2.52]
[0.62 ; 0.69]
[– 0.62 ; 1.94]

Question 17

Gegee die inligting van huisgrootte (X) in tien vierkante meters en die verkoopprys (Y) in R 10000 van huise in Bloemfontein: /Given the information on home size (X) in ten squared metres and the sale price (Y) in R 10000 of houses in Bloemfontein:

X 24 32 15 30 26 20 28 32
Y 60 98 36 84 78 50 82 104

Bereken SXX/Calculate SXX

970
252.875
3 872
207
Geeneen van bogenoemde. / None of the above

Question 18Gegee die inligting van huisgrootte (X) in tien vierkante meters en die verkoopprys (Y) in R 10000 van huise in Bloemfontein: /Given the information on home size (X) in ten squared metres and the sale price (Y) in R 10000 of houses in Bloemfontein:

X 24 32 15 30 26 20 28 32
Y 60 98 36 84 78 50 82 104

Bereken SYY/ Calculate SYY

970
525.875
3 872
207
Geeneen van bogenoemde. / None of the above





Leave a Comment

Your email address will not be published. Required fields are marked *