Question 1
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Vind ‘n 99% vertrouensinterval vir die verwagte eksamenpunt indien die toetspunt 70 is. /Find a 99% confidence interval for the expected examination mark if the test mark is 70.
[68.92 ; 81.91] | ||
[69.19 ; 81.65] | ||
[69.97 ; 80.87] | ||
[63.86 ; 86.98] | ||
[71.147 ; 79.70] |
Question 2
‘n Pearsonkorrelasiekoëffisiënt van 0 (r=0) vir die veranderlikes X en Y impliseer dat:/ A Pearson correlation coefficient of 0 (r=0) for the variables X and Y implies that:
1. daar geen verwantskap tussen X en Y is nie. /there is no relationship between X and Y.
2. X en Y nie gekorreleerd is nie. /X and Y is not correlated
3. daar ‘n gebrek aan lineariteit tussen X en Y is. /there is a lack of linearity between X and Y.
(i) & (ii) | ||
(i) & (ii) & (iii) | ||
(ii) & (iii) | ||
(ii) | ||
Geeneen van bogenoemde. / None of the above |
Question 3
‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n = 20 data points produced the following results:
?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal SSE. / Find SSE.
4.0552 | ||
25.148 | ||
42.992 | ||
49.193 | ||
185.094 |
Question 4
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Toets betekenisvolle regressie. Op ? = 0.01 is die tabel waarde________ . /Test for significance regression. At ? = 0.01 the table value is ________ .
2.306 | ||
3.169 | ||
2.228 | ||
3.355 | ||
1.397 |
Question 5
‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n =20 data points produced the following results:
?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal ‘n 95% vertrouensinterval vir ?as x = 3.0 /Find a 95% confidence interval for ? when x = 3.0.
[11.9809 ; 12.6191] | ||
[10.3848 ; 10.8340] | ||
[10.5763 ; 10.6237] | ||
[10.1258 ; 11.0742] | ||
[10.3767 ; 10.8233] |
Question 6
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Vind die vergelyking van die regressielyn wat gebruik kan word om eksamenpunte te beraam vanaf toetspunte./Find the equation of the regression line which can be used to estimate examination marks from test marks.
? = 29.13 – 0.66x | ||
? = 0.66 + 29.13x | ||
? = 0.66 – 29.13x | ||
? = 29.13 + 0.66x | ||
? = 79.8 – 81.9x |
Question 7
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y). /The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Vind ‘n 90% vertrouensinterval vir die verwagte eksamenpunt indien die toetspunt 70 is./Find a 90% confidence interval for the expected examination mark if the test mark is 70.
[71.97 ; 78.87] | ||
[69.19 ; 81.65] | ||
[6901 ; 81.83] | ||
[71.14 ; 79.70] | ||
[67.45 ; 83.36] |
Question 8
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y). /The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Toets vir betekenisvolle regressie. Gee die toets statistiek waarde./Test for significance regression. Give the test statistic value.
2.306 | ||
143.4 | ||
5.04 | ||
5.3363 |
Question 9
‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n =20 data points produced the following results:
?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal ‘n 95% vertrouensinterval vir die helling ?. /Find a 95% confidence interval of the slope ?.
[10.3767 ; 10.8233] | ||
[2.9434 ; 3.8566] | ||
[1.1381 ; 5.6619] | ||
[2.9430 ; 3.8570] | ||
[3.1907 ; 3.6093] |
Question 10
‘n Eenvoudige lineêre regressie analise vir n = 20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n =20 data points produced the following results:
?= 2.1 + 3.4x? x = 50 ? y = 212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal: Se2 /Determine: Se2
1.3971 | ||
10.283 | ||
0.2253 | ||
0.2138 | ||
2.7329 |
Question 11
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Vind ‘n 95% vertrouensinterval vir die verwagte eksamenpunt indien die toetspunt 70 is./Find a 95% confidence interval for the expected examination mark if the test mark is 70.
[71.97 ; 78.87] | ||
[69.19 ; 81.65] | ||
[69.01 ; 81.83] | ||
[71.14 ; 79.70] | ||
[67.45 ; 83.36] |
Question 12
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Bereken die korrelasiekoeffisient./Calculate the correlation coefficient.
0.0011 | ||
0.7606 | ||
0.8721 | ||
0.9989 | ||
0.9980 |
Question 13
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Vind die persentasie variasie wat deur die regressie verklaar word. /Find the percentage of variation explained by the regression.
0.0011 * 100 | ||
0.7606*100 | ||
0.8721*100 | ||
0.9989*100 | ||
0.9980*100 |
Question 14
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Bereken Se2./Calculate Se2.
17.93 | ||
4.23 | ||
143.4 | ||
11.97 |
Question 15
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Bereken SSE./Calculate SSE.
17.93 | ||
4.23 | ||
143.4 | ||
11.97 |
Question 16
Die volgende tabel toon die persentasies behaal deur 10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages obtained by 10 Biometry students in a test (X) and the final examination (Y).
X | 75 | 80 | 93 | 65 | 87 | 71 | 98 | 68 | 84 | 77 |
Y | 82 | 78 | 86 | 72 | 91 | 80 | 95 | 72 | 89 | 74 |
Vind ‘n 95% vertouensinterval vir die ? /Find the 95% confidence interval for the ?.
[0.60 ; 0.71] | ||
[– 1.2040 ; 2.52] | ||
[0.62 ; 0.69] | ||
[– 0.62 ; 1.94] |
Question 17
Gegee die inligting van huisgrootte (X) in tien vierkante meters en die verkoopprys (Y) in R 10000 van huise in Bloemfontein: /Given the information on home size (X) in ten squared metres and the sale price (Y) in R 10000 of houses in Bloemfontein:
X | 24 | 32 | 15 | 30 | 26 | 20 | 28 | 32 |
Y | 60 | 98 | 36 | 84 | 78 | 50 | 82 | 104 |
Bereken SXX/Calculate SXX